爱因斯坦再一次被证明是正确的:正如他在100年前所言,引力场发生的变化的确会像波纹一般在时空之海中泛起涟漪并向外传播。美国LIGO实验成功探测到13亿光年之外两个质量分别为36个太阳质量和29个太阳质量的黑洞在合并过程中产生的引力波信号。这两个黑洞在合并之后,形成一个质量为62倍太阳质量的黑洞,那么剩余的3倍太阳质量哪里去了?答案便是这强大的引力波。根据爱因斯坦最为著名的质能方程E=Mc2,这巨大的质量已经被转化为了能量的形式。
这还只是开始。既然我们现在已经掌握了探测引力波的方法,那么我们就将有能力对宇宙中一些我们此前没有办法观测到的天体现象开展观测和研究,比如发生在早期宇宙中的超大质量黑洞合并事件等等。但我们能够向前回溯到多远?宇宙最初创生的大爆炸事件产生的原初引力波将是如何的?LIGO实验的成功能否在这方面对我们有所帮助?
不管是LIGO还是任何未来其他的探测设备,因为它们无一例外地都位于宇宙之中,因此它们都将无法探测到原初层面的引力波信号。
因此,要想对这一层面的引力波进行探测,恐怕我们只能采取一些间接的方式,比如对其在宇宙微波背景辐射(CRB)中产生的效应进行观察,后者是宇宙大爆炸留下的余晖。
当光线沿某一特定方向发生震荡,我们就说光线发生了偏振。如果引力波在宇宙微波背景辐射出现时便已经存在,那么它们就应该会在其中留下自己的蛛丝马迹,某种特殊的光线偏振模式信号,也就是所谓的“B模”(B modes)。数年前,在南极望远镜工作的科学家们曾经宣布在宇宙微波背景辐射信号中探测到B模信号,但最终研究人员意识到这实际上是宇宙尘埃产生的干扰信号,后者是能够对宇宙微波背景辐射信号产生扭曲的干扰源之一,非常生动地展示了开展这样的探测工作的难度之高。
但即便困难重重,开展这样的研究工作将带来惊人的高回报。如果探测能够给出肯定的结果,那么这将从根本上证实宇宙暴涨阶段的存在,并解答诸多困扰着宇宙学研究的问题,如为何宇宙中的物质分布如此均匀。的确,想要找出这一宇宙创生时期的信号将是一项巨大的挑战,但请不要忘记,就在半个世纪之前,当科学家们首次提出对引力波进行探测的实验方案时,人们曾经同样认为这是天方夜谭。